Communications Eng. Department Level: $3^{\text {rd }}$ Year
Examiner: Dr. Mohamed Eid
Time allowed: 3 hours

Semester: Autumn 2019
Final Exam: Mathematics IV
Code: Math 301
Date: January 5, 2020

The Exam consists of one page

Answer all questions
No. of questions: 4 Total Mark: 55

Question 1 (15 marks)

(a)Find the integrals: (i) $\int_{0}^{\infty} x^{6} e^{-2 x} d x$
(ii) $\int_{0}^{\infty} \frac{1}{1+\mathrm{x}^{4}} \mathrm{dx}$
(iii) $\int_{0}^{\frac{\pi}{2}} \sqrt{\cot x} d x$
(b)If $\mathrm{J}_{\mathrm{k}}(\mathrm{x})$ is the Bessel's function:
(i) Show that: $J_{\frac{1}{2}}(x)=\sqrt{\frac{2}{\pi x}} \sin x$.
(ii)Find $\int_{0}^{1} \mathrm{x}^{3} \mathrm{~J}_{0} \mathrm{dx}$ where $\mathrm{J}_{0}(1)=0.77, \mathrm{~J}_{1}(1)=0.44$.

Question 2 (10 marks)

(a)Solve the PDE: (i) $u_{x x}-u_{y y}=e^{2 x+3 y}$
(ii) $3 u_{x y}-u_{y y}=\cos (3 x-2 y)$
(b)Solve the wave equation: $\mathrm{u}_{\mathrm{tt}}-\mathrm{u}_{\mathrm{xx}}=0,0<x<1$
B. C. $u(0, t)=u(1, t)=0$ and I.C. $u(x, 0)=x, \quad u_{t}(x, 0)=3$.

Question 3 (15 marks)

(a)Write the table of frequency and the Pdf of the data: $2,2,2,3,3,5,5,5,6,6,8,8$.

Also, find \bar{x}, σ.
(b)From the data: $(1,3),(2,5),(4,7),(5,11),(7,14)$.

Find the regression line $y=a+b x$ and $\bar{x}, \bar{y}, \sigma_{x}, \sigma_{y}, \operatorname{cov}(x, y)$, r.
(c) If x is random variable with pdf $\mathrm{f}(\mathrm{x})=\frac{1}{4}(\mathrm{x}+1), 0 \leq \mathrm{x} \leq 2$. Find the moment generating function $M_{x}(t)$ and from it, find m_{1}, m_{2}, and σ.
(d)If x, y are random variables with pdf $\mathrm{f}(\mathrm{x}, \mathrm{y})=\frac{1}{40}\left(\mathrm{x}^{2} \mathrm{y}\right), x=1,2, \quad y=0,2,3$. Find $\operatorname{cov}(x, y)$.

Question 4 (15 marks)

(a)From Beta distribution, show that $\sigma=\sqrt{\frac{m \cdot n}{(m+n+1)(m+n)^{2}}}$.
(b)If the probability of a defective item in production processing is 0.002 . By the binomial distribution, find the probability that a lot of 300 items contains 1 defective.
(c)If $\mu=0.8, \sigma=2$ in normal distribution. Find $\mathrm{P}(2 \leq \mathrm{x} \leq 3), \mathrm{P}(\mathrm{x}>3)$ where $\phi(1.1)=0.8643, \phi(0.6)=0.7257$
(d)From the Gamma distribution: $f(x)=\frac{1}{\Gamma(n)} x^{n-1} e^{-x}, x, n>0$

